BlockRunBlockRun

Intelligence Pricing

Pay only for what you use. Provider cost + 5%.

Pricing Formula

Your cost = Provider cost + 5%

The 5% margin covers:

  • x402 settlement infrastructure
  • Smart routing and reliability
  • No API key management
  • Instant on-chain payments

What $1 Gets You

ModelApproximate Usage
GPT-4o~400K input tokens
DeepSeek V3~7M input tokens
Gemini Flash~13M input tokens
DALL-E 3~20 images

Full Price List

OpenAI

ModelInput (per 1M)Output (per 1M)
GPT-5.2$5.25$15.75
GPT-4o$2.63$10.50
GPT-4o-mini$0.16$0.63
o1$15.75$63.00
o1-mini$3.15$12.60
o3-mini$1.16$4.62

Anthropic

ModelInput (per 1M)Output (per 1M)
Claude Opus 4$15.75$78.75
Claude Sonnet 4$3.15$15.75
Claude Haiku 4.5$0.84$4.20

Google

ModelInput (per 1M)Output (per 1M)
Gemini 3 Pro$1.31$5.25
Gemini 2.5 Pro$1.31$5.25
Gemini 2.5 Flash$0.08$0.32

xAI

ModelInput (per 1M)Output (per 1M)
Grok 4 Fast$5.25$26.25

DeepSeek

ModelInput (per 1M)Output (per 1M)
DeepSeek V3$0.15$0.29
DeepSeek R1$0.58$2.30

Meta (via Together/Fireworks)

ModelInput (per 1M)Output (per 1M)
Llama 3.3 70B$0.42$0.42
Llama 3.1 405B$3.15$3.15

Qwen

ModelInput (per 1M)Output (per 1M)
Qwen 2.5 72B$0.42$0.42

Mistral

ModelInput (per 1M)Output (per 1M)
Mistral Large$2.10$6.30

Image Generation

ModelPrice per Image
DALL-E 3 Standard (1024x1024)$0.04
DALL-E 3 HD (1024x1792)$0.08
DALL-E 3 HD Wide (1792x1024)$0.12
Nano Banana$0.05
Nano Banana Pro$0.10

Cost Comparison: BlockRun vs Direct

ProviderDirect PricingBlockRunDifference
OpenAI GPT-4o$2.50/$10.00$2.63/$10.50+5%
Anthropic Claude$3.00/$15.00$3.15/$15.75+5%
DeepSeek$0.14/$0.28$0.15/$0.29+5%

You pay 5% more, but you get:

  • No API key management
  • No monthly invoices
  • No prepaid credits
  • One wallet for all providers
  • Instant per-request settlement

Budget Management

Session Budgets

from blockrun_llm import LLMClient

# Limit spending per session
client = LLMClient(session_budget=5.00)

Check Balance

balance = client.get_balance()
print(f"${balance} USDC remaining")

Track Spending

# Get usage stats
usage = client.get_usage()
print(f"Spent: ${usage['total_spent']}")
print(f"Requests: {usage['request_count']}")

Cost Optimization Tips

1. Use Cheaper Models for Routine Tasks

# Expensive
response = client.chat("openai/gpt-4o", "Summarize this text")

# 50x cheaper, similar quality
response = client.chat("deepseek/deepseek-v3", "Summarize this text")

2. Use Flash Models for Speed

# For quick, simple tasks
response = client.chat("google/gemini-2.5-flash", prompt)

3. Match Model to Task

TaskRecommended ModelWhy
Bulk processingDeepSeek V3Cheapest
Quick responsesGemini FlashFast + cheap
Complex reasoningo1, Claude OpusBest quality
Code generationGPT-4o, Claude SonnetGood balance
Real-time dataGrokX/Twitter access

4. Optimize Prompts

Shorter prompts = fewer input tokens = lower cost.

No Hidden Fees

  • No subscriptions
  • No minimums
  • No prepaid credits
  • No overage charges
  • No rate limit fees

Just: provider_cost × 1.05

Payment Details

  • Currency: USDC on Base
  • Settlement: Instant, on-chain
  • Verification: Basescan

Next Steps